电子邮件:liang.wu@sjtu.edu.cn
通讯地址:上海市东川路800号化学化工学院化学C楼605室
个人主页: https://orcid.org/0000-0001-8737-0562
2009-2013 伦敦帝国理工学院 化学工程系 博士
2006-2009 华东理工大学 化学系 硕士
2002-2006 上海大学 化学系 学士
2018-至今 上海交通大学 化学化工学院 专职科研
2015-2018 上海交通大学 化学化工学院 博士后研究员
2013-2015 易唯思商务咨询公司 分析师
液晶材料的分子模拟和统计力学理论研究
高分子的分子力场开发和聚合反应动力学模拟
复杂化学体系的分子模拟和机器学习
国家自然科学基金 聚-(γ-苯甲基)-L-谷氨酸酯的液晶态的分子模拟和密度泛函理论研究
中国博士后科学基金会 面上项目 胆甾液晶的物理模型分子模拟和密度泛函理论研究
液晶材料的分子模拟和统计力学理论研究
1. Xintian Xie, Liang Wu, Huai Sun, Xuzhou Yan, and Xinyuan Zhu, Phase Behavior and Liquid Crystalline Ordering of [2]Catenated Molecular Systems, Macromolecules 2023 56 (16), 6189-6198
2. Liang Wu, Huai Sun, Manipulation of cholesteric liquid crystal phase behavior and molecular assembly by molecular chirality, Phys. Rev. E 100, 022703
3. Liang Wu, Huai Sun, Cholesteric ordering predicted using a coarse-grained polymeric model with helical interactions, Soft Matter, 2018,14, 344-353
4. Liang Wu, Alexandr Malijevský, Carlos Avendaño, Erich A. Müller, George Jackson; Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement. J. Chem. Phys. 2018; 148 (16): 164701.
高分子的分子力场开发和聚合反应动力学模拟
1. Evangelia Charvati, Lingci Zhao, Liang Wu, Huai Sun, A New Parameterization of an All-Atom Force Field for Cellulose, JOM 2021 73, 2335–2346
2.Sun, H., Wu, L., Jin, Z., Cao, F., Zheng, G., Huang, H. (2021). Coarse-Grained Force Fields Built on Atomistic Force Fields, Foundations of Molecular Modeling and Simulation. Molecular Modeling and Simulation. Springer
3. Hao Huang, Liang Wu, Huiming Xiong, Huai Sun, A Transferrable Coarse-Grained Force Field for Simulations of Polyethers and Polyether Blends, Macromolecules 2019, 52, 1, 249–261
复杂化学体系的分子模拟和机器学习
1.Yan Xiang, Yu-Hang Tang, Zheng Gong, Hongyi Liu, Liang Wu, Guang Lin, and Huai Sun, Efficient Exploration of Chemical Compound Space Using Active Learning for Prediction of Thermodynamic Properties of Alkane Molecules, J. Chem. Inf. Model., DOI: 10.1021/acs.jcim.3c01430
2. Yanze Wu, Huai Sun, Liang Wu, Joshua D. Deetz, Extracting the mechanisms and kinetic models of complex reactions from atomistic simulation data, J. Comput. Chem. 2019, 40, 1586–1592
3. Zheng Gong, Yanze Wu, Liang Wu, Huai Sun, Predicting Thermodynamic Properties of Alkanes by High-Throughput Force Field Simulation and Machine Learning, J. Chem. Inf. Model., 2018 58 (12), 2502-2516
《计算化学理论与实践》
《Python 编程与数据科学》
《化学计算与建模》